Riemannian Metric and Geometric Mean for Positive Semidefinite Matrices of Fixed Rank

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Riemannian Metric and Geometric Mean for Positive Semidefinite Matrices of Fixed Rank

This paper introduces a new metric and mean on the set of positive semidefinite matrices of fixed-rank. The proposed metric is derived from a well-chosen Riemannian quotient geometry that generalizes the reductive geometry of the positive cone and the associated natural metric. The resulting Riemannian space has strong geometrical properties: it is geodesically complete, and the metric is invar...

متن کامل

Regression on Fixed-Rank Positive Semidefinite Matrices: A Riemannian Approach

The paper addresses the problem of learning a regression model parameterized by a fixedrank positive semidefinite matrix. The focus is on the nonlinear nature of the search space and on scalability to high-dimensional problems. The mathematical developments rely on the theory of gradient descent algorithms adapted to the Riemannian geometry that underlies the set of fixed-rank positive semidefi...

متن کامل

A Riemannian geometry with complete geodesics for the set of positive semidefinite matrices of fixed rank

We present a homogeneous space geometry for the manifold of symmetric positive semidefinite matrices of fixed rank. The total space is the general linear group endowed with its natural rightinvariant metric, and the metric on the homogeneous space is chosen such that the quotient space is the image of a Riemannian submersion from the total space. As a result, we obtain complete geodesics that a...

متن کامل

Geometric distance and mean for positive semi-definite matrices of fixed rank

This paper introduces a new distance and mean on the set of positive semi-definite matrices of fixed-rank. The proposed distance is derived from a well-chosen Riemannian quotient geometry that generalizes the reductive geometry of the positive cone and the associated natural metric. The resulting Riemannian space has strong geometrical properties: it is geodesically complete, and the metric is ...

متن کامل

Singular value inequalities for positive semidefinite matrices

In this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl‎. ‎308 (2000) 203-211] and [Linear Algebra Appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications

سال: 2010

ISSN: 0895-4798,1095-7162

DOI: 10.1137/080731347